
F324: Rings, Polymers and Analysis <u>4.1.1. Arenes Mark Scheme /114</u>

1. (a)

ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+

(b) (i) White precipitate **OR** white solid **OR** white crystals \checkmark

DO NOT ALLOW colourless **DO NOT ALLOW** white ppt <u>and</u> bubbles **DO NOT ALLOW** Br₃C₆H₂OH **OR** 2,4,6-tribromophenol **OR** tribromophenol

2

1

1

(ii) 1,2-Dibromocyclohexane ✓

ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR $C_6H_{10}Br_2$ OR structures (iii) **MUST** spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks

benzene <u>electrons</u> or <u> π -bonds</u> are delocalised \checkmark

ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation

DO NOT ALLOW benzene has delocalised structure or ring

phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark

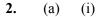
ALLOW diagram to show movement of lone pair into ring for phenol

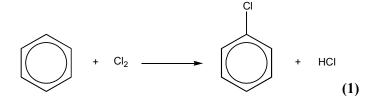
cyclohexene electrons are localised OR delocalised between two carbons \checkmark

ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π -bonding correctly described

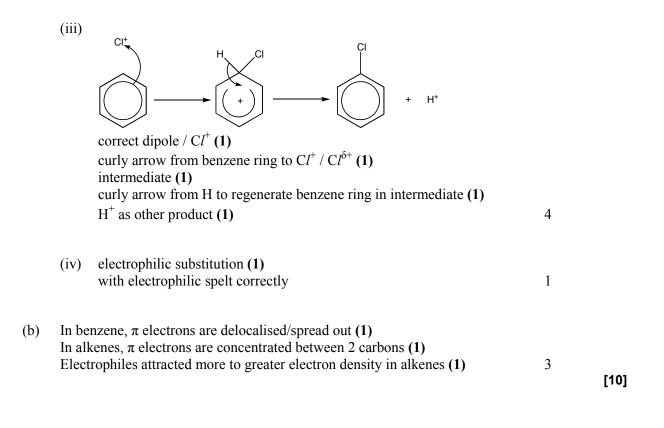
benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark

DO NOT ALLOW charge density **OR** electronegativity instead of electron density


benzene cannot **polarise** or induce a dipole in $Br_2 OR$ phenol can polarise the $Br_2 OR$ cyclohexene can polarise Br_2 or the Br–Br bond \checkmark


ALLOW Br^{δ^+} **OR** electrophile Br^+ as alternate to polarise

5


1

1

(ii) Introduces a permanent dipole on Cl_2 / forms Cl^+ / $AlCl_3 + Cl_2 \rightarrow AlCl_4^- + Cl^+$ / $AlCl_3 + Cl_2 \rightarrow Cl^{\delta^+} - AlCl_3^{\delta^-}$ (1)

3. Discussion of the π -bonding

p-orbitals overlap (1)
above and below the ring (1)
(to form) π-bonds / orbitals (1)

any of the first three marks are available from a labelled diagram eg

 π π -bonds

(π -bonds / electrons) are <u>delocalised</u> (1) 4 marks

Other valid points - any two of:

- ring is planar /
- C-C bonds are equal length / have intermediate length/strength between C=C and C-C /
- σ-bonds are between C-C and/or C-H
- bond angles are 120° MAX 2 out of 4 marks (1)(1)

6

1

[7]

Quality of written communication two or more sentences with correct spelling, punctuation and grammar

5. bonding in benzene

overlap of p-orbitals / π bonds/electrons (or labelled) (1)

above and below the ring (or shown in a diagram) (1) electrons are <u>delocalised</u> (or labelled) (1) C–C bonds are: same length/strength / in between single and double / σ -bonded AW (1)

greater reactivity of phenol

(the ring is activated because ...) <u>lone</u> pair from O is delocalised into the ring (1) so electron density (of the ring) is increased (1) so electrophiles are more attracted (to the ring) / dipole in electrophile more easily induced (1) (NOT just more easily "attacked" or "susceptible")

Quality of written communication mark for at least two complete sentences in which the meaning is clear with correct spelling, punctuation and grammar (1)

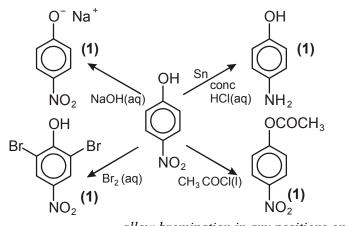
[8]

8

1

4

6. (a) Correct structure of 3-nitrophenol or any multiple nitrated phenol (1)


(b) M_r phenol (C₆H₆O) = 94.0 (1)

 M_r 4-nitrophenol (C₆H₅NO₃) = 139.0 (1)

expected mass/moles of nitrophenol from 100 g = 148 g/1.06 mol (or ecf from wrong M_rs) (1)

at 27% yield gives 40 / 39.9 (g) (or ecf) (1)	
last mark is for 0.27 \times expected mass to 2 or 3 sf	

(c)	conditions for nitration of benzene: HNO ₃ is concentrated (1)		
	conc H_2SO_4 is present (1)		
	heating or stated temp above 50°C (1)	3	
	explanation for greater reactivity of phenol lone <u>pair</u> from O atom is delocalised into the ring (1)		
	greater (π) electron density around the ring (1)		
	(the benzene ring in phenol) is <u>activated (1)</u>		
	attracts electrophiles/ $^{+}NO_{2}$ more / makes it more susceptible to electrophiles AW (1)	4	
	quality of Written Communication mark for at least two legible sentences with correct spelling, punctuation and grammar	1	[13]

allow bromination in any positions on the ring

[4]

4

2

8. delocalised electrons

electrons are spread over more than two atoms AW (1)

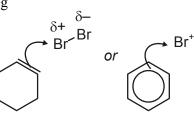
π -bond

7.

formed by overlap of p-orbitals/ diagram to show (1)

[2]

(a) (i) **bromine as an electrophile**


9.

an electrophile accepts an electron pair (1) *NOT a lone pair*

bromine is polarised/has + charge (centre)/dipole on Br-Br/Br⁺ shown in diagram (1)

appropriate diagram showning a curly arrow from a double/ π bond to the Br^{δ^+}/Br⁺ (1)

eg

3

	(ii)	comparison of reactivity of cyclohexene and benzene benzene is (more) stable / more energy required (1)		
		benzene (π) electrons are delocalised (1)		
		benzene has lower electron/- charge density (1)		
		so bromine is less polarised /attracted to it / benzene is less susceptible to electrophiles (1)		
		ora for cyclohexene	4	
		quality of written communication mark for any two of the the terms:		
		delocalised/localised, π -electrons/bonds/system, electron density, dative covalent, activation/stabilisation energy, halogen carrier, heterlytic fission, addition/substitution, polarity used appropriately (1)	1	
(b)	(i)	iodobenzene because		
		Br is more electronegative than I (1) ora		
		so the I atom will be positive δ^+ /the electrophile (1)	2	
	(ii)	$C_6H_6 + IBr \rightarrow C_6H_5I + HBr$ (1) or ecf giving $C_6H_5Br + HI$	1	[11]
(a)	(i)	NaOH / Na (1)	1	
	(ii)	$C_6H_5OH + NaOH \rightarrow C_6H_5O^-Na^+ + H_2O / C_6H_5OH + Na \rightarrow C_6H_5O^-Na^+ + \frac{1}{2}H_2 $ (1)	1	

10.

(b) (i) $\delta_{O}^{\delta^{+}O}$ (1)

allow a dipole on just one C=O bond

- (iii) lone/electron <u>pair</u> from oxygen is delocalised into the ring /interacts with π-electrons (1)
 increases π-electron density / negative charge (around the ring) (1)
 attracts electrophiles more (1)
- (c) M_r salicylic acid = 138 (1)

moles (in 1:1 reaction) = $3500 \ge 10^{6}/138 = 2.536 \ge 10^{7}$ (1) mass of phenol needed = $2.536 \ge 10^{7} \ge 94 = 2384$ tonnes (1) allowing for 45% yield = $2384 \ge \frac{100}{45} = 5298/5300$ (tonnes) (1) *allow* 5297.5–5300 *allow ecf throughout*

11. methylation stage (can come anywhere)

 $\begin{array}{l} CH_{3}Cl / CH_{3}Br \ \textbf{(1)} \\ AlCl_{3} / FeBr_{3} \ etc. \ \textbf{(1)} \\ equation - e.g. \ C_{6}H_{6} + CH_{3}Cl \rightarrow C_{6}H_{5}CH_{3} + HCl \ \textbf{(1)} \\ intermediate \ name \ or \ unambiguous \ structure \ \textbf{(1)} \\ \textbf{4 marks} \\ intermediates \ and \ equations \ will \ vary \ if \ methylation \ is \ done \end{array}$

after nitration or reduction

nitration stage (conc) H_2SO_4 (1) (conc) HNO_3 (1) equation – e.g.: $C_6H_5CH_3 + HNO_3 \rightarrow C_6H_4(CH_3)NO_2 + H_2O$ (1) intermediate – name or unambiguous structure (1) 4 marks [12]

1

2

3

	tin/ir HC <i>l</i> equa 3 ma	tion – e.g.: $C_6H_4(CH_3)NO_2 + 6[H] \rightarrow C_6H_4(CH_3)NH_2 + 2H_2O$ or with H ⁺ also on left to give $C_6H_4(CH_3)NH_3^+$ (1) arks allow other suitable reducing agents: lity of Written Communication mark for a well organised ver with the three stages clearly distinguished and sequenced (1)	12 [12]
12.	(a)	any two of fibres / dyes / explosives / pharmaceuticals etc (1)(1) allow any specific examples as long as they do involve aromatic nitro or amine groups – eg NOT nylon, fertiliser etc	2
	(b)	temp 50-60° (1) concentrated (acids) (1) allow abbreviations for concentrated	2
	(c)	$\begin{array}{ll} C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O \\ \text{reactants (1)} & \text{products (1)} \\ allow \ a \ balanced \ equation \ for \ multiple \ nitration \ at \ any \\ positions \end{array}$	2
	(d)	 (i) a pair of electrons (1) (electrons) move / transferred / a (covalent) bond breaks/forms (1) 	2
		 (ii) it accepts a pair of electrons (from the benzene) (1) NOT a 'lone' pair 	1
		(iii) H(⁺) (on the ring) is replaced by NO ₂ (⁺) (1) <i>allow 'substitutes'</i> <i>ignore + charges</i>	1
		(iv) it is not used up / reformed at the end AW (1)	1

(e) π -bonding electrons are <u>delocalised</u> (1)

six π -electrons in benzene (1) four π -electrons in the intermediate (1)

 π -electrons are not over one carbon atom / over **five** carbon atoms / p-orbitals in the intermediate **(1)** *this must be stated in words to compare benzene and the intermediate*

 π -electrons are over the **complete** ring / **all around** the ring **all six** carbon atoms/ p-orbitals overlapping (1)

Quality of written communication

for at least two sentences/statements with legible text and correct spelling, punctuation and grammar (1)

[17]

6